
COP 3330: Arrays & Strings in Java Page 1 © Mark Llewellyn

COP 3330: Object-Oriented Programming
Summer 2007

Arrays and Strings in Java – Part 1

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2007

COP 3330: Arrays & Strings in Java Page 2 © Mark Llewellyn

Strings
• A string is a sequence of characters.
• Java provides two classes to support strings:

– String class – the instances of String class are constants,
i.e., the content of a String object cannot be changed
after its creation.

– StringBuffer class – the instances of StringBuffer class
are mutable, i.e., the content of a StringBuffer object
can be changed after its creation.

• The String class has some unique privileges not shared by
ordinary classes.
– A string can be created using string literals.
– Operator + can be applicable to strings.

• The characters in a string are indexed by 0 to n-1, where n
is the length of the string.

COP 3330: Arrays & Strings in Java Page 3 © Mark Llewellyn

String Class

• Creation of a String object.
String s = new String(“abc”);
String s = “abc”;

• Add operator:
String s1 = “abc”;
String s2 = “de”;
String s3 = s1 + s2; //s3 = “abcde”

• The String class has a lot of methods. These
methods are useful to manipulate strings.

COP 3330: Arrays & Strings in Java Page 4 © Mark Llewellyn

length and charAt methods
int length() – this instance method returns the

length of the string.
String s=“abc”;
s.length() returns 3

char charAt(int index) – this instance
method returns the character at a specific index.
String s=“abcde”;
s.length(); 5
s.charAt(0); ‘a’
s.charAt(1); ‘b’
s.charAt(4); ‘e’
s.charAt(5); error

COP 3330: Arrays & Strings in Java Page 5 © Mark Llewellyn

indexOf method
int indexOf(char c)
int indexOf(char c, int index)

Returns the index of the first occurrence of the
character c in the current object starting at position
index (default 0). Returns –1 if there is no such
occurrence. [overloaded method]

String s=“ababc”;
s.indexOf(‘b’);//returns 1
s.indexOf(‘b’,2); //returns 3
s.indexOf(‘d’,2); //returns -1

COP 3330: Arrays & Strings in Java Page 6 © Mark Llewellyn

indexOf method (cont.)
int indexOf(String s2)
int indexOf(String s2, int index)

Returns the index of the first occurrence of the
substring s2 in the current object, beginning at
position index (default 0). Returns –1 if there is
no such occurrence.

String s=“daabcabc”;
String s2=“ab”;
s.indexOf(s2); //returns 2
s.indexOf(s2,3); //returns 5
s.indexOf(s2,6); //returns -1

COP 3330: Arrays & Strings in Java Page 7 © Mark Llewellyn

substring method
String substring(int startindex)
String substring(int startindex, int lastindex)

Returns the substring of the current object starting
from startindex and ending with lastindex-1
(or the last index of the string if lastindex is not
given). [overloaded method]

String s=“abcdef”;
s.substring(1); //returns “bcdef”
s.substring(3); //returns “def”
s.substring(1,4);//returns “bcd”
s.substring(3,5);//returns “de”

COP 3330: Arrays & Strings in Java Page 8 © Mark Llewellyn

equals and equalsIgnoreCase
boolean equals(String s2)
boolean equalsIgnoreCase(String s2)

Returns true if the current object is equal to s2;
otherwise false.
The method equalsIgnorecase disregards
the case of the characters.

String s=“abc”;
s.equals(“abc”) //returns true
s.equals(“abcd”) //returns false
s.equals(“aBc”) //returns false
s.equalsIgnoreCase(“aBc”)//returns true

COP 3330: Arrays & Strings in Java Page 9 © Mark Llewellyn

StringBuffer Class
• StringBuffer constructors:

StringBuffer()
StringBuffer(int size)

Returns an instance of the StringBuffer class that is
empty but has an initial capacity of size characters
(default 16 characters).

StringBuffer(String arg)

Creates an instance of the StringBuffer class from the
string arg.

• length and charAt methods are also defined
for StringBuffer class.

COP 3330: Arrays & Strings in Java Page 10 © Mark Llewellyn

append and insert methods
StringBuffer append(String s)

Returns the current object with the String parameter s
appended to the end.

StringBuffer insert(int index, char c)
StringBuffer insert(int index, String s)

Inserts the character c (or String s) into the current
StringBuffer object at index index. The characters (after
index) are shifted to right.
sb = new StringBuffer(“abcd”);
sb.insert(0,”AB”) //returns sb as “ABabcd”
sb.insert(1,”CD”) //returns sb as “ACDBabcd”
sb.insert(8,”EFG”)//returns sb as “ACDBabcdEFG”
sb.append(“HI”) //returns sb as “ACDBabcdEFGHI”

COP 3330: Arrays & Strings in Java Page 11 © Mark Llewellyn

Reading strings using BufferedReader

• Recall from our earlier look at using
BufferedReader that we need to first declare a
BufferedReader object that was directed to read
from the input stream attached to the standard input
device. Once this is done, reading strings from the
keyboard is straightforward.

BufferedReader stdin = new BufferedReader(
new InputStreamReader(System.in));

COP 3330: Arrays & Strings in Java Page 12 © Mark Llewellyn

BufferedReader Example
//Developer: Mark Llewellyn Date: June 2007
import java.io.*;

public class readName {
public static void main(String[] args){

BufferedReader stdin = new BufferedReader(new
InputStreamReader(System.in));

System.out.println(“Enter your first name: “);
String firstName = stdin.readLine();
System.out.println(“Enter your last name: “);
String lastName = stdin.readLine();
System.out.println(“Your name is “ + firstName + “ “

+ lastName + “.”);
}

}

COP 3330: Arrays & Strings in Java Page 13 © Mark Llewellyn

Wordlength Example
//Developer: Mark Llewellyn Date: June 2007
import java.io.*;

public class Wordlength {
public static void main(String[] args) throws IOException {
BufferedReader stdin = new BufferedReader(

new InputStreamReader(System.in));

//read the word from the user
System.out.println(“Enter a word: “);
String word = stdin.readLine();

//determine the length of the word
int wordLength = word.length();

//output results
System.out.println(“Word “ + word + “ has a length of “

+ wordLength + “ characters.”);
}

}

COP 3330: Arrays & Strings in Java Page 14 © Mark Llewellyn

Palindrome Example
//Developer: Mark Llewellyn Date: June 2007
//Checks words to see if they are palindromes
import java.io.*;

public class Palindrome {
static boolean isPalindrome(String s) {

int i = 0;
int j = s.length() - 1;
boolean flag = true;
while ((i<j) && flag){

if (s.charAt(i) != s.charAt(j))
flag = false;

else {i++; j--; }
}
return flag;

}

COP 3330: Arrays & Strings in Java Page 15 © Mark Llewellyn

Palindrome Example (cont.)

public static void main(String args[]) throws
IOException {
String s;
BufferedReader stdin =

new BufferedReader (new InputStreamReader
(System.in));

System.out.print("A String > ");
System.out.flush();
s = stdin.readLine();

if (isPalindrome(s))
System.out.println(s + " is a palindrome");

else
System.out.println(s + " is not a palindrome");

}
}

COP 3330: Arrays & Strings in Java Page 16 © Mark Llewellyn

Decimal to Binary -- Example
//Developer: Mark Llewellyn Date: June 2007
//Converts a decimal number to its binary equivalent
import java.io.*;
public class DecToBinary {
static StringBuffer toBinary(int decVal) {
StringBuffer sb = new StringBuffer("");
if (decVal == 0)

sb.insert(0,"0"); //note insert position
else

while (decVal != 0) {
if (decVal%2 == 0)

sb.insert(0,"0"); //note insert position
else

sb.insert(0,"1"); //note insert position
decVal = decVal / 2;

}
return sb;

}

COP 3330: Arrays & Strings in Java Page 17 © Mark Llewellyn

Decimal to Binary – Example (cont.)

public static void main(String args[]) throws IOException {
int num;
BufferedReader stdin =

new BufferedReader (new InputStreamReader(System.in));

System.out.print("An integer > ");
System.out.flush();
num = Integer.parseInt(stdin.readLine().trim());

System.out.println("Decimal Number: " + num +
" Corresponding Binary Number: " + toBinary(num));

}
}

COP 3330: Arrays & Strings in Java Page 18 © Mark Llewellyn

• An array is an ordered list of values, each of the same type.

An array of size N is indexed from zero to NAn array of size N is indexed from zero to N--11

scores

The entire arrayThe entire array
has a single namehas a single name

Each value has a numeric Each value has a numeric indexindex

This array holds 10 values that are indexed from 0 to 9This array holds 10 values that are indexed from 0 to 9

Arrays in Java

9

0

92

1

79

2

88

3

69

4

73

5

95

6

78

7

84

8

88

9

An array type variable holds a reference to an object.

COP 3330: Arrays & Strings in Java Page 19 © Mark Llewellyn

Accessing Elements in Arrays
• The act referring to an individual array element is

called subscripting or indexing.
– general form: arrayname[index]

where index is an integer expression.

Examples
int[] x = new int[6];

x[0]=5;
i=2;
x[i+1]=x[i];

7-288-25
array x

x[0] x[1] x[2] x[3] x[4] x[5]

COP 3330: Arrays & Strings in Java Page 20 © Mark Llewellyn

Explicit Initialization of Arrays

• Java provides a declaration form to explicitly specify the initial
values of the elements of an array.

• Assuming an n element array, the general form is:

ElementType[] id = {expr0, expr1, ..., exprn-1};

where each expri is an expression that evaluates to type ElementType.

Examples:

int[] fibonacci = {1, 1, 2, 3, 5, 8, 13, 21, 34};

String[] cats = {“bug”, “squeaky”, “paris”, “kitty kat”};

int[] unit = {1};

COP 3330: Arrays & Strings in Java Page 21 © Mark Llewellyn

Constant Arrays

• As in other declarations, the modifier final can be applied in an array
declaration. The modifier has the usual effect – after its initialization, the
array variable is treated as a constant. In this case, the array variable cannot
change which array it references, however, the values in the array can be
changed!

final int[] B = {10, 20};

• Graphically this would look like the following:

where indicates that the value of the reference cannot be changed.
B = new int[2]; //illegal: a final cannot be the

//target of an assignment

B[1] = 30; //legal: B[1] is not final

B 10 20

COP 3330: Arrays & Strings in Java Page 22 © Mark Llewellyn

Arrays of Objects
• If the element type of an array is an object type, then the

elements hold either the value null or references to element type
values rather than holding element type values themselves. This
is illustrated graphically below:

String[] s = new String[2];

s[0] = “Orlando”;

s[1] = “Florida”;

s

“Orlando” “Florida”

COP 3330: Arrays & Strings in Java Page 23 © Mark Llewellyn

Arrays of Objects (cont.)
• This example uses the awt class Point.

Point[] p = new Point[3];
p[0] = new Point(0,0);
p[1] = new Point(1,1);
p[2] = new Point(2,2);

p

Point: (0,0) Point: (1,1) Point: (2,2)

p[0] p[1] p[2]

COP 3330: Arrays & Strings in Java Page 24 © Mark Llewellyn

Arrays of Objects (cont.)
• Because p[0], p[1], and p[2] are Point reference

variables, they have access to Point member methods. For
example the code segment below:

p[0].setX(1);
p[1].setY(p[2].getY());

Causes the following update of array p.

p

Point: (1,0) Point: (1,2) Point: (2,2)

p[0] p[1] p[2]

COP 3330: Arrays & Strings in Java Page 25 © Mark Llewellyn

Arrays of Objects (cont.)
• The elements of p hold references. Therefore, an assignment of

one of its elements modifies what that element references rather
than modifying the object that had been referenced. Consider the
following code segment that further updates array p.

Point vertex = new Point(4,4);
p[1] = p[0];
p[2] = vertex;

p

Point: (1,0) Point: (4,4)

p[0] p[1] p[2] vertex

COP 3330: Arrays & Strings in Java Page 26 © Mark Llewellyn

Array Bounds in Java

• Unlike many programming languages, Java automatically checks
that proper array subscripts are used. If a subscript is determined
to be invalid, an exception of type
IndexOutOfBoundsException is generated. (Unless the
program provides exception handling code, this exception causes
the program to terminate.)

• The following code segment contains two misuses of array
sample.

int[] sample = new int[40];
sample[-1] = 0; //subscript too small
sample[40] = 10; //subscript too large

COP 3330: Arrays & Strings in Java Page 27 © Mark Llewellyn

Arrays in Java (cont.)

• Arrays can be defined with or without initialization. If there is
no initialization, then the definition has the form:

ElementType[] id;
where ElementType is the type of the individual elements in
the array and id is an identifier naming the array. The value of
any location (index) in this array is currently undefined.

• An array variable definition can specify the array to which the
variable is to reference. The most common form is:

ElementType[] id = new ElementType[n];
where n is a nonnegative integer expression specifying the
number of elements in the array.

COP 3330: Arrays & Strings in Java Page 28 © Mark Llewellyn

Array Definition - Example
BufferedReader stdin = new BufferedReader(

new InputStreamReader(System.in));
int[] number = new int[3];
n = Integer.parseInt(stdin.readLine()); //assume n = 5
double[] value = new double[n];
String[] s = new String[n];

number

value

s

0 0 0

0.0 0.0 0.0 0.0 0.0

null null null null null

COP 3330: Arrays & Strings in Java Page 29 © Mark Llewellyn

Array Definition - Example
• Since no initial values were specified for the elements

themselves, the elements in all three arrays are default
initialized.

By default:
– numeric arrays are initialized to 0.
– boolean arrays are initialized to false.
– object arrays are initialized to null.

COP 3330: Arrays & Strings in Java Page 30 © Mark Llewellyn

Arrays in Java (cont.)
• Suppose d and e are both int arrays, where d references an array

with three elements whose values are initialized to 10, 20, and 30 and
e references an array of two elements whose values are initialized to
40 and 50. Also suppose that f is a two-element double array
whose elements are initialized to 1.1 and 3.3. This scenario is shown
below:

d

e

f

10 20 30

40 50

1.1 3.3

COP 3330: Arrays & Strings in Java Page 31 © Mark Llewellyn

Arrays in Java (cont.)
• Since d and e are both of the same type (int arrays), we can assign

one to the other For example, if d = e is executed. Then the new
value of d is the value of e; i.e., d and e now reference the same array
of elements. Graphically, this will look like the figure below:

d

e

f

10 20 30

40 50

1.1 3.3

This array is no longer
accessible! Java
reclaims the memory.

COP 3330: Arrays & Strings in Java Page 32 © Mark Llewellyn

Member Methods and Arrays in Java
• Because an array is a Java object, an array as associated with it

all of the member methods of an Object (e.g., clone() and
equals()). However, the array clone() method is
overridden specifically for arrays.

• In addition to member methods, an array also has a public
final data field length specifying the number of elements in
the array. Designers of Java were quite helpful to programmer
by including this field as it is a convenience not found in many
other programming languages. This allows the programmer to
do the following:

int fibonacci = {1, 1, 2, 3, 5, 7, 13, 21, 34, 55};
for (int i = 0; i < fibonacci.length; ++i){

System.out.println(“Fibonacci Number “ + i +
“ is: “, fibonacci[i]);

}

COP 3330: Arrays & Strings in Java Page 33 © Mark Llewellyn

Cloning an Array in Java
• Array method clone() returns a duplicate of the array. The new

array object has the same number of elements as the invoking
array. The values of the clone array are duplicates of the
invoking array.

• A clone produced in this manner is known as a shallow copy.
The corresponding elements in the two arrays reference the same
objects. The shallowness can be seen by viewing the
representation of the array variables u and v defined in the
following code segment and shown graphically on the next page.

Point[] u = {new Point(0,0), new Point(1,1),
new Point(2,2) };

Point[] v = u.clone();

COP 3330: Arrays & Strings in Java Page 34 © Mark Llewellyn

Cloning an Array in Java (cont.)
Point[] u = {new Point(0,0), new Point(1,1),

new Point(2,2) };
Point[] v = u.clone();

u

Point: (0,0) Point: (1,1) Point: (2,2)

u[0] u[1] u[2]

v[0] v[1] v[2]
v

COP 3330: Arrays & Strings in Java Page 35 © Mark Llewellyn

Cloning an Array in Java (cont.)
• The shallowness of array cloning is further highlighted by the

effect of the following statement on the arrays u and v:
u[2].setX(3);

u

Point: (0,0) Point: (1,1) Point: (3,2)

u[0] u[1] u[2]

v[0] v[1] v[2]
v

COP 3330: Arrays & Strings in Java Page 36 © Mark Llewellyn

Cloning an Array in Java (cont.)
• Although array v was created to be a clone of array u, there is no requirement

that the elements of v reference the same Point object as u.
v[2] = new Point(4,20);

u

Point: (0,0) Point: (1,1) Point: (3,2)

u[0] u[1] u[2]

v[0] v[1] v[2]
v Point: (4,20)

COP 3330: Arrays & Strings in Java Page 37 © Mark Llewellyn

Distinct Element by Element Cloning
• If a distinct element-by-element clone, say w, of u is needed, it

can be created in the following manner.

Point[] w = new Point[u.length];
for (int i = 0; i < u.length; ++i) {

w[i] = u[i].clone();
}

• Array clones created in this fashion are called deep copies.
• The result of executing the code shown above is illustrated on the

next page.

COP 3330: Arrays & Strings in Java Page 38 © Mark Llewellyn

Distinct Element by Element Cloning

u

Point: (0,0) Point: (1,1) Point: (2,2)

u[0] u[1] u[2]

w[0] w[1] w[2]
w

Point: (2,2)Point: (1,1)Point: (0,0)

COP 3330: Arrays & Strings in Java Page 39 © Mark Llewellyn

Cloning an Array of a Primitive Type
• Using the method clone() on an array with a primitive element

type (not an object type) automatically produces a deep copy.
• The code shown below illustrates this concept.

int[] x = {4, 5, 6, 7};
int[] y = x.clone();

• These two arrays have the following depiction:
x[0] x[1] x[2] x[3]

y[0] y[1] y[2] y[3]

4 5 6 7x

4 5 6 7y

COP 3330: Arrays & Strings in Java Page 40 © Mark Llewellyn

For Statement Review
• The next couple of pages are intended as a review

and clarification of the for statement.

for (forInit; forExp; forUpdate) {
forAction

}

The update step is
performed AFTER the
execution of the loop

body. The update can be
an assignment, method
invocation, or omitted

A logical test expression that
determines whether the action and

update step are executed

Initialization step
prepares for the first
evaluation of the
test expression

The body of the loop
iterates whenever the

test expression
evaluates to true

COP 3330: Arrays & Strings in Java Page 41 © Mark Llewellyn

For Statement Revisited
Example

int n = 3;
for (int i = 0; i < n; i++) {

System.out.println(“Hi!”);
}

Update step:
After 1st iteration: i = 1
After 2nd iteration: i = 2
After 3rd iteration: i = 3
Not executed 4th time

logical test:
1st iteration: true 0 < 3
2nd iteration: true 1 < 3
3rd iteration: true 2 < 3
4th iteration: false 3 !< 3

Initialization step:
i is set to 0

Loop body:
1st iteration: print “Hi!”
2nd iteration: print “Hi!”
3rd iteration: print “Hi!”
4th iteration: not executed

COP 3330: Arrays & Strings in Java Page 42 © Mark Llewellyn

For Loop Examples
• Note that the loop update is performed only after the body

of the loop is executed.
• What do you expect to be printed by the following code

segment?
int n = 1;
int i;
for (i = 1; i < n; ++i) {

n++;
}
System.out.println(“Value of i is: “ + i);
System.out.println(“Value of n is: “ + n);

Output:
Value of i is: 1
Value of n is: 1

WHY?

COP 3330: Arrays & Strings in Java Page 43 © Mark Llewellyn

For Loop Examples (cont.)
WHY?

– Because the test expression evaluates to false the very first time
since i == 1 and n == 1. Since the loop body is never
executed, the loop increment is never executed either and thus, the
value of i remains at 1 when the next statement after the loop is
executed.

int n = 1;
int i;
for (i = 1; i < n; ++i) {

n++;
}
System.out.println(“Value of i is: “ + i);
System.out.println(“Value of n is: “ + n);

COP 3330: Arrays & Strings in Java Page 44 © Mark Llewellyn

For Loop Examples (cont.)
• Will the two loops below generate the same values of i at

the end of their execution? Yes or No?

int n = 5;
int i;
for (i = 1; i < n; ++i){

System.out.println(“Loop 1 – i is: “ + i);
}
System.out.println(“Final value of i is: “ + i);
for (i = 1; i < n; i++){

System.out.println(“Loop 2 - i is: “ + i);
}
System.out.println(“Final value of i is: “ + i);

WHY?

COP 3330: Arrays & Strings in Java Page 45 © Mark Llewellyn

For Loop Examples (cont.)
Answer: Yes!

Loop 1 – i is: 1
Loop 1 – i is: 2
Loop 1 – i is: 3
Loop 1 – i is: 4
Final value of i is: 5
Loop 2 – i is: 1
Loop 2 – i is: 2
Loop 2 – i is: 3
Loop 2 – i is: 4
Final value of i is: 5

WHY?
– The final iteration of the loop occurs in both loops when i has a

value of 4. Immediately after this, the loop increment is evaluated
which sets i = 5. Next the loop expression is evaluated again
but this time it is false since i is not less than n (it is in fact equal
to n now). The loop terminates in both cases with i equal to 5.

COP 3330: Arrays & Strings in Java Page 46 © Mark Llewellyn

For Loop Increment Step
• Notice in the previous example that it does not

matter whether the loop increment variable is
updated using the prefix increment operator or the
postfix increment operator.

• Since the loop increment occurs only after the
execution of the loop

COP 3330: Arrays & Strings in Java Page 47 © Mark Llewellyn

Array -- Examples

Reading values of an int array:

int[] x = new int[100];

for (i=0; i<x.length; i++)
System.out.println(“Enter an integer: “);
x[i] = Integer.parseInt(stdin.readLine().trim());

}

Shifting values of an int array:
int temp = x[0];

for (i=0; i<x.length; i++)
x[i]=x[i+1];

x[x.length-1]=temp;

COP 3330: Arrays & Strings in Java Page 48 © Mark Llewellyn

Array – Examples (cont.)

Finding the location of the maximum value in an int array:
int loc = 0;

for (i=1; i<x.length; i++)
if(x[i]>x[loc])
loc=i;

Finding the first location of a given value in an int array:
int loc, i=0;

while ((i<x.length) && (x[i]!=item))
i=i+1;

if (i>=x.length) loc=-1;// not found
else loc=i; // found

COP 3330: Arrays & Strings in Java Page 49 © Mark Llewellyn

Array – Examples (cont.)

Finding summation of the values in an int array:

int sum=0;

for (i=0; i<x.length; i++)
sum=sum+x[i];

Reversing the contents of an int array:

int temp,i,j;

for (i=0,j=x.length-1; i<j; i++, j--) {
temp=x[i];
x[i]=x[j];
x[j]=temp;

}

COP 3330: Arrays & Strings in Java Page 50 © Mark Llewellyn

Array – Examples (cont.)

Count the number of items in an array which are less than 0.

int count; // For counting the items.
count = 0; // Start with 0 items counted.
for (int i = 0; i < A.length; i++) {

if (A[i] < 0.0) // if this item is less than
zero...

count++; // ...then count it
}
// At this point, the value of count is the number
// of items that have passed the test of being < 0

COP 3330: Arrays & Strings in Java Page 51 © Mark Llewellyn

Array – Examples (cont.)

• A more complete example of reading values into an array. Similar to
the example on page 47.

final int MAX_LIST_SIZE = 1000;
int[] buffer = new int[MAX_SIZE_LIST];
int listSize = 0;
for (int i = 0; i < MAX_LIST_SIZE; ++i) {

String input = stdin.readLine();
if(input != null) {

int number = Integer.parseInt(input);
buffer[i] = number;
++listSize;

}
else {

break;
}

}
int[] date = new int[listSize];
for(i = 0; i < listSize; ++i){

data[i] = buffer[i];
}

COP 3330: Arrays & Strings in Java Page 52 © Mark Llewellyn

Bounds Checking
• Once an array is created, it has a fixed size.

• An index used in an array reference must specify a valid
element.

• That is, the index value must be in bounds (0 to N-1).

• The Java interpreter will throw an exception if an array
index is out of bounds .

• This is called automatic bounds checking.

COP 3330: Arrays & Strings in Java Page 53 © Mark Llewellyn

Bounds Checking
• For example, if the array codes can hold 100 values, it

can only be indexed using the numbers 0 to 99.

• If count has the value 100, then the following reference
will cause an ArrayOutOfBoundsException:

System.out.println (codes[count]);

• It’s common to introduce off-by-one errors when using
arrays.

for (int index=0; index <= 100; index++)
codes[index] = index*50 + epsilon;

problem

COP 3330: Arrays & Strings in Java Page 54 © Mark Llewellyn

To make a new array that is a copy of A, it is necessary
to make a new array object and to copy each of
the individual items from A into the new array:

// Make a new array object, the same size as A.
double[] B = new double[A.length];
for (int i = 0; i < A.length; i++)

B[i] = A[i]; // Copy each item from A to B

Copying Arrays

To make a copy of our sample array A, it is not sufficient to say:
double[] B = A;

It does not create a new array object!
All it does is declare a new array variable B and make it
refer to the same object to which A refers.

COP 3330: Arrays & Strings in Java Page 55 © Mark Llewellyn

Copying Arrays (cont.)
• Java has a predefined subroutine to copy values from one array to another . It is

static member of the standard System class.
System.arraycopy()

• Its declaration has the form:

public static void arraycopy(Object sourceArray,
int sourceStartIndex,
Object destArray,
int destStartIndex,
int count)

COP 3330: Arrays & Strings in Java Page 56 © Mark Llewellyn

Copying Arrays (cont.)
• sourceArray, destArray can be arrays with any base type.
• count tells how many elements to copy.

• Values are taken from sourceArray starting at position
sourceStartIndex and are stored in destArray
starting at position destStartIndex.

• For example, to make a copy of the array A:

double B = new double[A.length];
System.arraycopy(A, 0, B, 0, A.length);

COP 3330: Arrays & Strings in Java Page 57 © Mark Llewellyn

Passing Arrays to Methods
• The syntax for expressing an array parameter definition is no different

from that of a normal variable definition. An array parameter has the
form:

ElementType[] ParameterName

• As required by Java, the main method of a console application
program has a single array parameter with an element type of String.
These are used for command line arguments and we’ll look at this
more closely later.

A formal array parameter must include its
array type as part of its declaration.

A formal array parameter must include
its name as part of its declaration

COP 3330: Arrays & Strings in Java Page 58 © Mark Llewellyn

Passing Arrays to Methods
• Since arrays are also objects, they are passed into method

by call-by-reference.
• A pointer to the array is passed into the method.
• The contents of the array pointed to by an actual parameter

can be changed by the method.
static void m(int[] x) {
int i, temp;
temp=x[0];
for (i=0; i<(x.length-1); i++)
x[i]=x[i+1];

x[x.length-1]=temp;
}
// in main
int[] a = {3,5,7,8};
m(a); // the content of a will be changed by m

COP 3330: Arrays & Strings in Java Page 59 © Mark Llewellyn

A method that makes a copy of an array of doubles:

double[] copy(double[] source) {
// Create and return a copy of the array, source.
// If source is null, return null.

if (source == null)
return null;

double[] cpy; // A copy of the source array.
cpy = new double[source.length];
System.arraycopy(source, 0, cpy, 0, source.length);
return cpy;

}

return type formal parameter type

Array Copy - Example

COP 3330: Arrays & Strings in Java Page 60 © Mark Llewellyn

Passing Arrays into Methods -- Example
static void findprimes(int[] p, int n) {
int i, val;
p[0]=2; val=3; i=1;
while (i<n) {

if (isprime(val,p,i)) { p[i]=val; i++; }
val=val+1;

}
}

static boolean isprime(int v, int[] p, int lastprimeloc) {
boolean primeflag=true;
int i=0;
while (primeflag && (i<lastprimeloc))

if (v%p[i] == 0) {primeflag=false;}
{else i++;}

return primeflag;
}

COP 3330: Arrays & Strings in Java Page 61 © Mark Llewellyn

Passing Arrays into Methods – Example (cont.)

// in main
int i;
int[] primes = new int[100];

findprimes(primes,10);
System.out.println(“First 10 Primes:”);
for (i=0; i<10; i++)

System.out.println(primes[i]);

COP 3330: Arrays & Strings in Java Page 62 © Mark Llewellyn

Sequential Searching in an Array
• Method sequentialSearch() is similar to the code on

page 48. However, this time we are developing a complete
method which we will be able to put into a package of array
handling methods called ArrayTools. Notice that this
method is a class (i.e. static) method.

// sequentialSearch(): searches unsorted list for a key
public static int sequentialSearch(int[] data, int key){

for(int i = 0; i < data.length; i++) {
if (data[i] == key){

return(i); //return position of key value
}

}
return –1;

}

COP 3330: Arrays & Strings in Java Page 63 © Mark Llewellyn

Sequential Searching in an Array (cont.)

0
6 9 82 69 16 54 90 44 2 87 74

1 2 3 4 5 6 7 8 9 10
A

int[] A = {6, 9, 82, 69, 16, 54,90, 44, 2, 87, 74};

int i1 = ArrayTools.sequentialSearch(A,16); //4

int i2 = ArrayTools.sequentialSearch(A,45); //-1

System.out.println(Math.max(A[0], A[8]); //6

COP 3330: Arrays & Strings in Java Page 64 © Mark Llewellyn

Searching an Ordered Array
• When the values of an array are in sorted order, there are more

efficient searches than sequential searching for finding a particular
key value. Method binarySearch() conducts a series of tests
using a divide and conquer strategy to continually reduce the “size”
of the array being searched until the position in which the element
must be located is found.

• We will include this method in our package ArrayTools. Notice
that this method is also a class method.

• NOTE: The standard Java class Collections method binarySearch()
behaves somewhat differently than the method on the next page – if
the key value is not in the list the built-in method returns the index
where the key value should be located.

COP 3330: Arrays & Strings in Java Page 65 © Mark Llewellyn

Searching an Ordered Array (cont.)
// binarySearch(): searches a sorted list for a key
public static int binarySearch(char[] data, char key){

int left = 0;
int right = data.length-1;
while (left <= right) {

int mid = (left + right)/2;
if (data[mid] == key) {

return mid;
}
else if (data[mid] < key) {

left = mid + 1;
}
else {

right = mid – 1;
}

}
return –1; //not found

}

COP 3330: Arrays & Strings in Java Page 66 © Mark Llewellyn

Searching an Ordered Array (cont.)

0
E I O P Q R T U W Y

1 2 3 4 5 6 7 8 9

key R

data

0
E I O P Q R T U W Y

1 2 3 4 5 6 7 8 9

key R

data

1: initial state
left right

left mid right

2: enter while loop and assign mid

COP 3330: Arrays & Strings in Java Page 67 © Mark Llewellyn

Searching an Ordered Array (cont.)

0
E I O P Q R T U W Y

1 2 3 4 5 6 7 8 9

key R

data

0
E I O P Q R T U W Y

1 2 3 4 5 6 7 8 9

key R

data

3: after comparison and reset – shaded elements no longer considered
left right

left
mid

right

4: data[mid] == key (stop with success)

mid

COP 3330: Arrays & Strings in Java Page 68 © Mark Llewellyn

More on Passing Arrays as Parameters

// demonstrates array parameter nuances
public class ArrayDemo{

public static void main(String[] args {
int i = 1;
int[] x = {1, 2, 3};
System.out.println(“int i: “ + i);
System.out.println(“array z: “ + z[0] + “ “ + z[1]

+ “ “ + z[2]);
zeroInt(i);
zeroArray(z);
System.out.println(“int i: “ + i);
System.out.println(“array z: “ + z[0] + “ “ + z[1]

+ “ “ + z[2]);
}

COP 3330: Arrays & Strings in Java Page 69 © Mark Llewellyn

More on Passing Arrays as Parameters
(cont.)

public static void zeroInt(int val) {
val = 0;

}

public static void zeroArray(int[] list) {
for (int j = 0; j < list.length; ++j){

list[j] = 0;
}

}
}//end class ArrayDemo

Output: int i: 1
array z: 1 2 3
int i: 1
array z: 0 0 0 WHY?

COP 3330: Arrays & Strings in Java Page 70 © Mark Llewellyn

More on Passing Arrays as Parameters
(cont.)

main()
i

z

1

zeroInt()

val 0

1 2 3

Activation record for method main()
during invocation of zeroInt()

Activation record for method
zeroInt() as val is set

COP 3330: Arrays & Strings in Java Page 71 © Mark Llewellyn

More on Passing Arrays as Parameters
(cont.)

main()
i

z

1

zeroArray()

list

j 0

1 2 3

Activation record for method main()
during invocation of zeroArray()

Activation record for method
zeroArray() as j is set

COP 3330: Arrays & Strings in Java Page 72 © Mark Llewellyn

More on Passing Arrays as Parameters
(cont.)

main()
i

z

1

zeroArray()

list

j -

0 0 0

Activation record for method main()
as invocation of zeroArray()
completes

Activation record for method
zeroArray() as it completes

Variable j is out of scope when for
loop completes

